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Abstract. A detailed theoretical treatment is given of eigenfunctions and eigenenergies of
a multilayer organic quantum well sandwiched between two different dielectric media. The
abrupt change of dielectric constants at the interfaces distorts the wave function and results
in there being possible surface states in addition to propagating states. The proper boundary
conditions are accounted for by the method of image charges. Analytic criteria for the existence
of surface states are established using the nearest-layer approximation; they depend not only on
the intralayer and interlayer parameters but also on the number of layers. The size dependence
together with the dependence on signs and relative magnitudes of the structure parameters fully
determine the energy spectrum of propagating states as well as the number and the location of
surface states.

1. Introduction

Manipulation technologies for semiconductors [1] and organic materials [2] have been
developed and so quantization effects and dimensional effects of electronic excitations
have been clarified. At the same time one can control (i) the radiation field via the
microcavities and (ii) the manipulated semiconductor quantum wells via the distributed
Bragg reflectors at both ends. Combining the results, efforts are being made to realize
a strong interaction between quantized electronic excitations and quantized modes of the
radiation field via mutual quantum control of the two systems on the same footing. The
nonclassical nature of the radiation field can be established from investigation of these
systems. Recently, unusual structures have been quasi-epitaxially grown for the first time
by the novel technique of organic molecular beam deposition [3, 4]. These structures are
called multiple organic quantum wells (MOQWs); they consist of alternating layers of
two different organic materials. Thanks to the weakness of the van der Waals forces that
hold the molecules together, organic heterostructures can even be grown alternatively in
incommensurate materials like 3, 4, 9, 10 perylenetetracarboxylic dianhydride and 3, 4, 7, 8
naphthalenetetracarboxylic dianhydride [3]. Each molecule in organic materials has a large
transition dipole moment in comparison to those of the unit cells of semiconductors, and
the electronic transitions in organic materials are primarily due to the generation of Frenkel
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excitons—which are coherent elementary excitations. So, (M)OQWs have proven to provide
one of the most promising areas for studying molecular Frenkel and charge-transfer excitons
as well as various potential device applications [5, 6, 7, 8]. Although the electronic structures
and optical properties of semiconductor quantum wells have been well studied [1], some
characteristics of (M)OQWs remain undiscovered as yet. In this paper we are concerned
with the electronic structure of a multilayer OQW. The super-radiance property of OQWs
has been investigated recently in [9]; however, the interaction between crystalline layers
was neglected in the investigation. Super-radiant decay can be described in terms of the
imaginary part of the second-order self-energy due to exciton–photon interaction, while its
real part gives the dipole–dipole interaction. Usually the absolute value of the dipole–dipole
interaction is much larger than the radiative decay rate [10]. Therefore, it is natural to obtain
the electronic structure of the Coulomb excitons with the dipole–dipole interaction taken
into account before discussing the dynamics of surface excitons. In general, especially in
crystals having a small spacing between layers, the interlayer coupling plays a crucial role in
determining the eigenstates of the whole material structure. With the interlayer interaction
taken into account, the excitation can hop from layer to layer and the resulting electronic
structure is that of the whole OQW rather than that of separate layers. In this respect, it
would not be so accurate to describe radiative rates as those coming from the first monolayer,
the second monolayer, etc. Even in crystals like tetracene, anthracene, etc, whose Coulomb
exciton band widths in the direction perpendicular to the layer planes are small as compared
to other energy characteristics [11], experimental measurements should, in principle, be
explained on the basis of the energy spectrum of the OQW as a whole. The lowest photo-
excited elementary excitations in solids can be described as excitons. Although excitons
are of Wannier–Mott type in inorganics, their nature in organics has remained unclear
to date [12]. In some organics like stronglyπ -bonded 3, 4, 9, 10 perylenetetracarboxylic
dianhydride [13], (charge-transfer) excitons seem to have large radii as compared to the
intermolecular separation resembling the Wannier–Mott type. Sometimes, in the same kind
of structure—say, in PbI-based compounds—excitons have alternatively been considered as
either of Frenkel type [14] or of Wannier–Mott type [15]. Moreover, coexistence of the
two types of exciton is also possible [16]. We are not convinced of the importance of this
debate and, in our model, we assume the excitons to be of Frenkel type. Frenkel excitons
propagate over the structure via dipolar interaction among the constituent molecules. We
introduce a model of multilayer OQWs with the dielectric constantε sandwiched between
continuum media with dielectric constantsε1 andε2. Due to an abrupt change of dielectric
constants at the interfaces separating the OQW region from the two surrounding materials,
surface states may be possible in some cases in addition to propagating states. In this
paper we will describe the electronic structure of the multilayer OQW, trying to answer the
questions of: (i) under which conditions surface states are possible; (ii) how many surface
states may appear; (iii) where the surface state energy levels are located; and (iv) how the
number of surface states depends on the thickness of the OQW.

The present paper is organized as follows. In section 2 we construct a Hamiltonian
of the OQW taking into account the boundary conditions due to the abrupt change of the
dielectric constants at the two interfaces by the method of image charges. Here the dielectric
constants outside the OQW play a role in inducing surface states. In section 3 we derive the
difference equations of the problem within the nearest-layer approximation (NLA) which
are to be solved for the propagating states in section 4 and for the surface states in section
5. In section 6 we discusses the results obtained as well as related optical responses and
future problems.
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Figure 1. An N -layer OQW with dielectric constant
ε sandwiched between two media with dielectric
constantsε1 andε2. The interlayer separation isc. The
effective distances from the outermost crystalline layers
to the interfaces ared1 andd2.

Figure 2. The LHS for N = 8 (solid lines) and
RHSs (dashed curves) of equation (40) as functions
of p taken from 0 toπ . The dashed curves labelled
1, 2, 3 and 4 are those withζ (ξ ) = 0.5, 0.1, −0.1
and−0.5 (0.1, 0.5, −0.5 and−0.1), respectively. The
intersections of solid lines and dashed curves determine
the allowed values ofp and the number of them for the
propagating states.

2. The multilayer organic quantum well and its Hamiltonian

Consider anN -layer OQW with dielectric constantε. This OQW is sandwiched between
two dielectric media with dielectric constantsε1 and ε2 (figure 1). Usually, medium 1
serves as an inorganic substrate (ε1 6= ε) and medium 2 is the open air (ε2 ≈ 1), or both
of the surrounding media are of the same material (ε1 = ε2 6= ε). In general, they are
different, i.e.,ε1 6= ε2 6= ε. The two interfaces are assumed to be smooth planes. Suppose
that the unit cells of the OQW lattice contain identical two-level molecules—one in each
cell—for simplicity (extensions to the case of more than one molecule per unit cell and to
multilevel molecules can be made). At low excitation one molecule is excited. This excited
molecule interacts with all other unexcited real molecules in the OQW regions as well as,
due to the presence of the interfaces, with their images in the region of the surrounding
materials (including the image of the excited molecule itself). Furthermore, the excitation
can be transferred from cell to cell, which is also influenced by the image effect. The energy
difference between the ground state of the OQW and the state in which one molecule is
being excited is described by the Hamiltonian:

H =
∑
lmn

(
ε − ε0 + An + Ãn

)
P +

lmnPlmn +
∑

lmn,l′m′n′

′
(
Tlmn,l′m′n′ + T̃lmn,l′m′ñ′

)
P +

l′m′n′Plmn. (1)

In equation (1)l, m, n are integers specifying the positionr of the unit cell in terms of the
basic vectorsa, b andc of the OQW:

r = la + mb + nc (2)

where −Na 6 l 6 Na, −Nb 6 m 6 Nb and n = 1, 2, . . . , Nc = N . Na (Nb) is the
number of unit cells in thea (b) direction andN the number of layers perpendicular to
thec direction. The OQW is assumed to be substantially extended in the (a, b) plane (i.e.,
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Na and Nb are large in comparison withN and can be made infinite at the end of the
calculations), but bounded in thec direction by two outermost layers (i.e.,N is finite). As
a consequence of such structure, the translational symmetry in thec direction is broken,
whereas in the (a, b) plane the usual Born–von Karman cyclic condition can be used by
treatingNa andNb as finite but very large. The operatorP +

lmn (Plmn) converts the molecule
in cell lmn from its ground state|0〉 (excited state|x〉) with energyε0 (ε) to its excited
state|x〉 (ground state|0〉) with energyε (ε0). The termAn (Ãn) expresses the difference in
energy caused by electrostatic interaction of the molecule in its excited state and unexcited
state with all of the other unexcited real (image) molecules in the OQW. Due to the finite
extent in thec direction, then-dependence is retained in the termsAn andÃn. These terms
are the diagonal elements ofH and are referred to as the site shift terms. The off-resonant
elements ofH , the termsTlmn,l′m′n′ and T̃lmn,l′m′ñ′ , are responsible for intersite excitation
transfer and are called the excitation transfer terms. Again the tilde signifies the image
effect. The prime on the second sum in equation (1), which excludes the contribution from
l = l′, m = m′ andn = n′ simultaneously, acts onT only, not onT̃ . Actual expressions
for An, Ãn, Tlmn,l′m′n′ and T̃lmn,l′m′ñ′ will be given later.

We split H into two parts, one forn = n′ and the other forn 6= n′:

H =
∑

n

Hn +
∑
nn′

′Hnn′ . (3)

The partHn

Hn =
∑
lm

(
ε − ε0 + An + Ãn

)
P +

lmnPlmn +
∑

lm,l′m′

′
(
Tlmn,l′m′n + T̃lmn,l′m′ñ

)
P +

l′m′nPlmn (4)

can be exactly diagonalized by means of the unitary transformation

Plmn = 1√
NaNb

∑
k

Bnkeik·ρl,m (5)

whereρl,m = la + mb, and k is a two-dimensional wave vector of motion in the layers.
The operatorBnk (B+

nk) is regarded as annihilating (creating) a two-dimensional exciton in
layer n with energyEn(k):

En(k) = ε − ε0 + An + Ãn + Ln(k) (6)

Ln(k) = 1

NaNb

∑
lm,l′m′

′
(
Tlmn,l′m′n + T̃lmn,l′m′ñ

)
eik·ρl−l′ ,m−m′ . (7)

The two-dimensional sum in equation (7) can easily be evaluated, e.g. by a chainwise
summation method [17]. Using equation (5) in the expression forHnn′ we are able to
convert equation (1) to a form that is entirely in terms of two-dimensional exciton operators:

H =
∑

k

∑
n

[
En(k)B+

nkBnk +
∑
n′ 6=n

Rnn′(k)B+
n′kBnk

]
(8)

with Rnn′ describing the interlayer coupling:

Rnn′(k) = 1

NaNb

∑
lm,l′m′

′
(
Tlmn,l′m′n′ + T̃lmn,l′m′ñ′

)
eik·ρl−l′ ,m−m′ . (9)

Evaluation of Rnn′ is also performable analytically for anyn and n′ 6= n. Studying
a multilayer structure by first considering separate layers and then calculating interlayer
interactions constitutes the so-called planewise method of summation [18]. Via such a
method applied to dipolar interactions in organic networks, explicit dependences on the
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lattice constants and orientations of transition dipole moments and wave vectors have
recently been derived [17] showing quite interesting dimensional crossover effects as well
as peculiarities concerning the optical responses.

A well recognized fact is that the interlayer interaction falls off very rapidly with
increasing separation between layers [17, 18]. In many cases, the NLA suffices to explain
experiments. We thus confine ourselves in this paper to the NLA only. The general
expression forAn is [19]

An ≡ Almn = 1

ε

∑
l′m′n′

′ [〈0x|Vlmn,l′m′n′ |0x〉 − 〈00|Vlmn,l′m′n′ |00〉] (10)

whereVlmn,l′m′n′ is the operator of the Coulomb interaction between molecules in cellslmn

and l′m′n′, and|0x〉 denotes a state in which celllmn is in the excited state and all others
are in the ground state. In the NLA there are three distinct types ofAn: A1 which couples
layer 1 with layer 2,An (1 < n < N ) which couples layern with its two nearest layers
n ± 1, andAN which couples layerN with layer N − 1. They are of the forms

A1 = 1

ε

∑
l′m′

[〈0x|Vlm1,l′m′2|0x〉 − 〈00|Vlm1,l′m′2|00〉] (11)

An = 1

ε

∑
l′m′

∑
n′=n±1

[〈0x|Vlmn,l′m′n′ |0x〉 − 〈00|Vlmn,l′m′n′ |00〉] (12)

AN = 1

ε

∑
l′m′

[〈0x|VlmN,l′m′N−1|0x〉 − 〈00|VlmN,l′m′N−1|00〉] . (13)

The general expression for the term̃An, is cumbersome because in the presence of two
interfaces the number of image molecules is infinite even for a single real molecule. In
principle, one can derive such an expression from first principles [20]. However, the NLA
does not require this, which greatly simplifies the actual expressions to be used. In our
model of multilayer OQWs, the dielectric constantsε1 andε2 of the surrounding materials
are well defined, but the interface distancesd1 and d2 shown in figure 1 are treated as
parameters of the order of or less than half an interlayer separation,c/2. Then, the image
effect needs to be taken into account only for the two surface layers. For all of the internal
layers with 1< n < N we haveÃn = 0, while

Ã1 = ε − ε1

ε(ε + ε1)

∑
l′m′

[
〈0x|Ṽlm1,l′m′1̃|0x〉 − 〈00|Ṽlm1,l′m′1̃|00〉

]
(14)

ÃN = ε − ε2

ε(ε + ε2)

∑
l′m′

[
〈0x|ṼlmN,l′m′Ñ |0x〉 − 〈00|ṼlmN,l′m′Ñ |00〉

]
. (15)

In equations (14) and (15),̃Vlm1,l′m′1̃ (ṼlmN,l′m′Ñ ) is the operator of the Coulomb interaction
between a real molecule in celllm1 (lmN ) and the image of a real molecule in celll′m′1
(l′m′N ), or, as we could equally say, the image molecule in image celll′m′1̃ (l′m′Ñ ). The
distance between layer 1 (N ) and its image layer̃1 (Ñ ) equals 2d1 (2d2). It is worth noting
that the coordinates of the electrons and nuclei of a real molecule and its image are mirror
symmetric. This feature should be treated with care when dealing with interactions due to
dipoles or multipoles.

The general formula forTlmn,l′m′n′ [19] is

Tlmn,l′m′n′ = 1

ε
〈0x|Vlmn,l′m′n′ |x0〉 (16)
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which is dominated by the dipole–dipole interactions [11]. For the termT̃lmn,l′m′ñ′ only two
contributions are of interest in the NLA; these are

T̃lm1,l′m′1̃ = ε − ε1

ε(ε + ε1)
〈0x|Ṽlm1,l′m′1̃|x0〉 (17)

T̃lmN,l′m′Ñ = ε − ε2

ε(ε + ε2)
〈0x|ṼlmN,l′m′Ñ |x0〉. (18)

We therefore obtain in the NLA the following expressions for theLn-terms of equation (7):

L1(k) = L(k) + 1

NaNb

∑
lm,l′m′

T̃lm1,l′m′1̃eik·ρl−l′ ,m−m′ (19)

Ln(k) = L(k) 1 < n < N (20)

LN(k) = L(k) + 1

NaNb

∑
lm,l′m′

T̃lmN,l′m′Ñeik·ρl−l′ ,m−m′ (21)

with

L(k) = 1

NaNb

∑
lm,l′m′

′Tlmn,l′m′neik·ρl−l′ ,m−m′ (22)

which is independent ofn in spite of the presence ofn in its definition.
As for the interlayer interactionRnn′(k), in the NLA the image terms̃T in equation (9)

do not contribute while theT -terms contribute only for|n′ − n| = 1, i.e., forn′ = n ± 1.
These two contributions (forn′ = n + 1 andn′ = n − 1) are equal to each other and can be
denoted simply byR(k):

R(k) = 1

NaNb

∑
lm,l′m′

Tlmn,l′m′n±1eik·ρl−l′ ,m−m′ . (23)

We notice that in the NLA we have four parameters in all. The three intralayer parameters
areE1(k), the energy of the first layer,En(k) = E(k) for 1 < n < N , the energy of theN−2
internal layers, andEN(k), the energy of theN th layer. The only interlayer parameter is
R(k). Besides this, we also haveN , the number of layers, as a parameter characterizing the
thickness of the OQW. Determining the dependence of the eigenfunctions and eigenenergies
of the OQW onE1(k), E(k), EN(k), R andN is our aim in the following sections.

3. Difference equations

The eigenfunction of the OQW is represented as

9k =
N∑

n=1

gn(k)B+
nk|0〉 (24)

where the expansion coefficientsgn(k) are to be determined so as to satisfy the Schrödinger
equation

H9k = ωk9k (25)

with ωk being the eigenenergy of the whole structure. When equations (8) and (24) are
substituted into equation (25) we get the following equations forω andgn (the wave vector
k of the motion in the layer planes is omitted for brevity from now on):

(ω − E1)g1 = Rg2 (26)

(ω − E)gn = R(gn−1 + gn+1) 1 < n < N (27)

(ω − EN)gN = RgN−1. (28)
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These are the difference equations that we need to solve. We first find the general solution
to equation (27) and then require it to be a solution of the two special equations (26) and
(28) too. It is easy to verify [21] that any of the four functions exp[(±κ ± ip)nc], with κ

andp real, obeys equation (27). The general solution of equation (27) is therefore a linear
combination of these functions:

gn = α′xn + β ′

xn
+ θ ′x∗n + ϑ ′

x∗n
(29)

wherex = exp(κ + ip)c and α′, β ′, θ ′, ϑ ′ are as yet unknown coefficients, which may
without loss of generality be assumed real. Putting equation (29) into equation (27) yields

ω = E + 2RF (30)

with

F =
[
α′xn + β ′/xn

]
cosh(κ + ip)c + [

θ ′x∗n + ϑ ′/x∗n
]

cosh(κ − ip)c

α′xn + β ′/xn + θ ′x∗n + ϑ ′/x∗n
. (31)

Sinceω is the eigenenergy of the whole multilayer structure, in which the layers are coupled,
it should not depend on the layer indexn explicitly. From equations (30) and (31), this is
so provided that cosh(κ + ip)c = cosh(κ − ip)c which leads to

sinh(κc) sin(pc) = 0. (32)

Either sinh(κc) or sin(pc) must vanish, resulting in two possibilities only:

case (i):κ = 0, p 6= 0; and
case (ii): κ 6= 0, pc = πj , wherej is an integer or zero.

It is easy to check that in case (i),gn turns out to be determined by two (not four)
coefficients only, namely

gn = α cos(pcn) + β sin(pcn). (33)

ThenF = cos(pc) and the eigenenergyω is given by

ω = E + 2R cos(pc). (34)

In case (ii), instead of equation (29),gn reduces to

gn = (−1)nj
[
θeκcn + ϑe−κcn

]
. (35)

Correspondingly, we haveF = (−1)j cosh(κc) and

ω = E + 2(−1)jR cosh(κc). (36)

We are left to determineα, β, p andθ , ϑ , κ, j such that equation (33) and equation (35)
will also be solutions to the two special equations (26) and (28) as well as meeting the
corresponding normalization condition required for the wave function, equation (24). The
states which originate from case (i) resemble a wave propagating back and forth along the
c direction due to the cosines and sines and—hence—are called propagating states. On the
other hand, the states which originate from case (ii) represent an evanescent wave near the
interfaces due to the exponential and—hence—are referred to as surface states. Apart from
the different behaviours of the spatial profiles, equations (34) and (36) also reveal that on
the energy scale the propagating states lie inside the interval [E − 2|R|, E + 2|R|]—called
the bulk band or simply the band—whereas the surface states are located outside that band.
In what follows we shall clarify the question of how many surface states are possible and,
if a surface state does exist, whether is its energy level is located above or below the band.
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Figure 3. LHSs with N = 5 (dashed, labelled 5),N = 10 (chain, labelled 10) and the RHS
(solid) of equation (58) for1m 1M < 0, |R/1m| = 1.2 and |R/1M | = 0.85. One nontrivial
intersection occurs forN = 10, while none are found forN = 5. The inset plots|R|/tm (solid)
and|R|/tM (dashed) versusN . In this caseN∗ is determined by the intersection of|R|/tM and
the straight line going through 1.

4. Propagating states

The notation is simplified by defining new parameters11 and1N :

11 = E − E1 1N = E − EN (37)

and by treatingp and κ in units of the interlayer separationc. Using equation (33) we
show that equation (26) is obeyed if

α(11 cosp + R) + β11 sinp = 0 (38)

whereas equation (28) demands

tan(Np) − α(1N + R cosp) + βR sinp

αR sinp − β(1N + R cosp)
= 0. (39)

Eliminatingα andβ from equations (38) and (39) we arrive at an equation which determines
the allowed values ofp:

sinp cotNp = ζ + ξ cosp (40)

with ζ andξ given by

ζ = R (11 + 1N)

111N − R2
ξ = 111N + R2

111N − R2
. (41)

A plot of the LHS and RHS of equation (40) as functions ofp for N = 8 is depicted in
figure 2. The intersections of the two sides determine the allowed values ofp and their
number. Note that the propagating states here come from the exciton propagation in the
direction perpendicular to the layer planes. The exciton propagation in the layers has already
been accounted for above via thek-dependence of11(k), 1N(k) andR(k). Sometimes, to
make this feature explicit,k is denoted ask‖ andp ask⊥.
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Figure 4. As figure 3, but for1m 1M > 0, |R/1m| = 0.8 and|R/1M | = 0.5. Two nontrivial
intersections occur forN = 10, while only one is found forN = 5. In this caseN∗ is determined
by the intersection of|R|/tm and the straight line going through 1.

Table 1. A summary of the dependence of the allowed number of propagating states on the
signs of the functionsf+ andf− defined by equation (42).

Row sign(f+) sign(f−) Number of propagating states

1 + 0 or + N − 1
2 + − N − 2
3 − or 0 0 or+ N

4 − or 0 − N − 1

Now, it is not difficult to verify that the number of propagating states, i.e., the number
of allowed values ofp, is determined by the signs of twoN -dependent quantitiesf+ and
f−, defined as

f± = ζ ± ξ ∓ 1

N
. (42)

Table 1 summarizes all of the possible situations (compare with figure 2). As the total
number of states should beN , the situations corresponding to rows 1, 2 and 4 in table 1
reveal ‘missing’ states. As can be expected, these missing states are the surface states which
originate from case (ii). To better understand the physics of the criteria determining the
possible number of propagating states, we would rather ‘translate’ table 1 into the original
physical parameters11, 1N , R andN than read it in terms off+ andf−. For that purpose,
we rewritef+ andf− as follows:

f± = ±(N + 1)(R ∓ t1)(R ∓ t2)

N(111N − R2)
(43)

where

t1 = −N(11 + 1N) − √
δ

2(N + 1)
(44)
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t2 = −N(11 + 1N) + √
δ

2(N + 1)
(45)

δ = (N2 − 1)(11 − 1N)2 + (11 + 1N)2. (46)

We have performed a careful sign analysis off± with respect toN , and to signs and absolute
values of11, 1N andR. As a result, we have obtained the following criteria: tM 6 |R|: N propagating states

tm 6 |R| < tM: N − 1 propagating states
|R| < tm: N − 2 propagating states.

(47)

In the above criteria

tm = |N |11 + 1N | − √
δ|

2(N + 1)
(48)

tM = N |11 + 1N | + √
δ

2(N + 1)
. (49)

At this point, several interesting remarks are worth making. When starting to deal with the
problem, intuition might lead to the following criteria: |1M | 6 |R|: N propagating states

|1m| 6 |R| < |1M |: N − 1 propagating states
|R| < |1m|: N − 2 propagating states

(50)

where|1m| = min {|11|, |1N |} and|1M | = max{|11|, |1N |}. Criteria (47) and (50) differ
strongly in a qualitative manner. First, the true criteria (47) are characterized by both11

and1N becausetm and tM are functions of both11 and1N (see equations (48) and (49)).
Second, the true criteria (47) depend onN explicitly, i.e., exhibit a size dependence. The
importance of the size dependence will be made clearer later when investigating surface
states in the next section. Yet, we note here that there is a study [22] which dealt with a
similar problem for the particular case where11 = 1N = 1 6= 0. This work found the
intuitive criteria (50) and was unable to predict the size dependence. As a consequence,
the possibility of the existence ofN − 1 propagating states was lost because for11 = 1N

(or equivalently1m = 1M ) the second line in (50) would disappear, and therefore only
N or N − 2 propagating states would be possible. Our criteria (47) predict the existence
of N − 1 propagating states even for11 = 1N = 1, since in this casetm and tM remain
unequal: tm = (N − 1)|1|/(N + 1), tM = |1| and tM − tm = 2|1|/(N + 1). The N -
dependence is of paramount significance for thin structures like OQWs which consist of
just a few crystalline layers. For thick samples, whenN � 1, the true and the intuitive
criteria coincide practically because limN→∞tm,M = |1m,M |.

To complete this section, we find the coefficientsα andβ in equation (33) with the aid
of equation (38) and the normalization condition for the wave function

1 = 〈9|9〉 =
N∑

n=1

|gn|2. (51)

As the result, we have obtained

α = Aβ A = − 11 sinp

11 cosp + R
(52)

β−2 = N

2
(A2 + 1) + sinNp

2 sinp

[
(A2 − 1) cos(N + 1)p + 2A sin(N + 1)p

]
. (53)
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5. Surface states

As is known, surface states can appear in structures which have surfaces, i.e., in finite
or at least semi-infinite systems. The possibility of surface states dated back to Tamm’s
paper [23] and was studied in a good deal of work [24] quite a long time ago. All of the
above-cited work considered a hypothetical model of a surface crystal which is obtained by
cleaving between two adjacent planes and switching off all of the interactions between these
two planes. Such a model, in fact, describes a semi-infinite system with a single surface
and, thus, at most only one surface state may arise in the NLA. The OQW structure that
we are considering here is of mesoscopic size and has two apparent surfaces.

The missing states in table 1 for case (i) are those resulting from case (ii) because these
are the only two possible cases. Likewise, the true criteria (47) and the intuitive criteria
(50) also imply, respectively, tM 6 |R|: no surface states

tm 6 |R| < tM: one surface state
|R| < tm: two surface states

(54)

and  |1M | 6 |R|: no surface states
|1m| 6 |R| < |1M |: one surface state
|R| < |1m|: two surface states.

(55)

We shall examine criteria (54) for surface states emphasizing the importance of the size
dependence. This requires a detailed analysis which will be carried out in what follows.
For case (ii), instead of equation (33), we must resort to equation (35) to determineθ ,
ϑ , κ and j self-consistently. The two special equations (26) and (28) are satisfied if the
parameters involved fulfil the following equations, respectively:

θ
[
11eκ + (−1)jR

] + ϑ
[
11e−κ + (−1)jR

] = 0 (56)

θeNκ
[
1N + (−1)jReκ

] + ϑe−Nκ
[
1N + (−1)jRe−κ

] = 0. (57)

Eliminating θ , ϑ from the above equations and introducing for brevity the notation
y = expκ, we get

y2N = 111Ny2 + (−1)jR(11 + 1N)y + R2

R2y2 + (−1)jR(11 + 1N)y + 111N

. (58)

Equation (58) will be solved graphically to determine the allowed values of the pairs
(κ, j). Among the various theoretical possibilities for the occurrence of surface states
we shall consider two relevant cases. The first case corresponds to1m 1M < 0 and
|1m| < |R| < |1M |. In figure 3 we show both sides of equation (58) as a function of
y = expκ with the parameters|R/1m| = 1.2 and |R/1M | = 0.85. There is no solution
for N = 5 and one solution forN = 10 (the trivial intersection aty = 1 is irrelevant).
In general, there exists a critical numberN∗ determined by|R/1m| and |R/1M | through
equations (54), (48) and (49) such that the number of surface states differs forN 6 N∗ and
N > N∗. In the case under study we have one surface state forN > N∗ and no surface
state forN 6 N∗. Here, for|R/1m| = 1.2 and|R/1M | = 0.85, we foundN∗ to be about
6. In the second case1m 1M > 0 and|R| < |1m| < |1M |. If we choose|R/1m| = 0.8
and |R/1M | = 0.5, the critical numberN∗ is about 6. This is why we have two surface
states forN = 10 (>N∗) and one surface state forN = 5 (<N∗) as seen from figure 4
and its inset. The above two numerical illustrations show the sensitivity of the number of
surface states to the size of the OQW. This is because our theory reveals that the surface
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state number is governed bytm and tM which depend not only on1m and1M but also on
N . The energy location, is, however, ruled by the signs of1m and1M . A thorough sign
analysis has led to the following sign rules. (i) If1m 1M > 0 the surface state(s) is/are (it
does not matter whether there is one or two of them) pushed up above (pulled down below)
the band for1M < 0 (1M > 0). (ii) If 1m 1M < 0 and there is only one surface state, this
state lies above (below) the band for1M < 0 (1M > 0). (iii) Nevertheless, if1m 1M < 0
and there exist two surface states, they are always one above and one below the band.

Having solved for the allowed values of (κ, j ), we are now in the position to determine
the coefficientsθ and ϑ in equation (35). Either of equations (56) or (57), and the
normalization condition, equation (51), are to be invoked for this purpose. We make use of
equations (56) and (51) and arrive at the desired results:

ϑ = θB B = − 11eκ + (−1)jR

11e−κ + (−1)jR
(59)

θ−2 = CN(κ) + 2B + B2CN(−κ) CN(κ) = 1 − e2Nκ

e−2κ − 1
. (60)

6. Discussion

We have shown that in anN -layer OQW there areN eigenstates which can be classified
into two kinds: propagating states and surface states. The number of surface states depends
not only on the material parameters but also on the thickness. The latter dependence is
manifested through the fact that within the NLA, for some parameter region, the number of
surface states changes from 0→ 1 or 1→ 2 (2 → 1 or 1→ 0) when the thickness increases
(decreases). It is noticed that the maximal number of surface states is 2. This is because
we have used the NLA. If one goes beyond the NLA—say, to the second-nearest-neighbour
approximation—one has to handle more parameters:E1, E2, E, EN−1, EN , R and R′

whereE = En with 2 < n < N − 1, R = Rn,n±1 andR′ = Rn,n±2. Then, instead of three
difference equations as in the NLA, there arise five equations which would give at most
four surface states. The concept of ‘number of surface states’ is thus quite delicate. From
a theoretical viewpoint, this concept is meaningful when a certain approximation for the
interlayer coupling has been invoked. As mentioned in section 2,Rnn′ decreases quickly (in
fact exponentially) with increasing|n−n′| and the NLA proves to be a good approximation
which has been widely used in the literature. From an experimental viewpoint, surface states
respond to light in their own manner. Their number could be found from measurements of
optical responses, which would suggest the theoretical approximation most suitable for the
material structure under measurement.

Our theory is valid for any1m and 1M . In particular, when1m = 1M = 0 (the
image effect is ignored), it follows from equations (48) and (49) that|R| > tm = tM = 0
always holds, yielding no surface states. We recover the result of [25], i.e., only solutions
of propagating nature,gn = √

2/(N + 1) sin(nπ/(N + 1)), are possible. This very simple
model for OQWs, whose boundary conditions are imposed by the so-called ‘no-escape
requirement’, has been used by many authors just because of the simple analytic expression
of its wave functions. A realistic model should account for the boundary conditions more
carefully—at least as in the present paper. The semi-infinite surface crystal model is also
obtained when one of1m and 1M vanishes (the remaining parameter is denoted by1),
and N → ∞. In this limiting case, our theory givestm = 0, tM = |1|. Since tm = 0,
the condition|R| < tm = 0 can never be fulfilled and the existence of two surface states is
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impossible. Directly from equation (58) we now get

lim
N→∞

y2N = f̃ (y) (61)

with

f̃ (y) = − y − ỹ

ỹy(y − 1/ỹ)
(62)

ỹ = − (−1)jR

1
≡ −(−1)j sRs1

∣∣∣∣R1
∣∣∣∣ . (63)

The existence and location of the surface state is determined by the value and sign ofỹ.
For (−1)jR = ±1 ands1 = ±1 (or ∓1), we haveỹ = −|R/1| (or +|R/1|). Making use
of the behaviour of the functioñf (y), it is easy to verify that the condition for the surface
state to exist and (a) to lie above the band is

1 ± R < 0 and1 < 0, or equivalently, |1| > |R| and1 < 0 (64)

and (b) to lie below the band is

1 ± R > 0 and1 > 0, or equivalently, |1| > |R| and1 > 0. (65)

These criteria are simply those reported for semi-infinite systems [24]. As a common result,
we can conclude that the necessary conditions for two (one) surface states to appear are that
both 1m 6= 0 and1M 6= 0 simultaneously (either of1m and 1M must differ from zero).
In general, the absolute values of both of the ratios|R/1m| and |R/1M | determine the
number of surface states (see criteria (47) and equations (48), (49)), while the signs of1m

and1M place the energy levels of these states. The sign rules established in the text seem
to be quite useful. According to these rules, if one knows the signs of1m and1M and the
number of surface states, one is always able to definitely point out whether the surface state
levels are located below or above the band. From an experimental point of view, one may
turn this around and ask: if the number and the location of the surface states are known
experimentally, may one provide information about the signs of1m and1M? The answer
is yes but not always definitely. When there are two surface states, the answer is definite.
Namely, if both levels lie below (above) the band, this means that both1m and 1M are
positive (negative). Alternatively, if the two levels are one above and one below the band,
this means that1m and1M have opposite signs. Nevertheless, when only one surface state
arises, one cannot reach any definite conclusion regarding the signs of1m and1M .

It is also of interest to clarify the role that the sign ofR plays. With this aim, let us
return to any formulae associated with the surface state problem (see equations (36), and
(56) to (58)). We become aware thatR never stands alone but always enters with a factor
(−1)j to form a combined quantity(−1)jR ≡ (−1)j sR|R|. This combination is important
since it determines the location of the surface state (see equation (36)). For a certain sign
of R, j is ‘selected’ in such a way that(−1)j sR together withκ must be solutions of
equation (58). Thus, the sign ofR does not play any role in forming surface states (sign(R)

is, however, important in problems concerning the optical responses).
Attention is now to be paid to the image effect in more detail. Theoretically, the

parameters1m and 1M can be evaluated using the formulae in section 2. Let us for
simplicity suppose that the molecules have inversion symmetry. Then in the dipole
approximation theA- and Ã-terms vanish. We have evaluated the remaining dipole sums
by Fourier transforming them into sums over the corresponding reciprocal-lattice vectors



2286 Nguyen Ba An and E Hanamura

Figure 5. Z = tm/|R| − 1 (upper panel) andZ = tM/|R| − 1 (lower panel) versusX = ε1/ε

andY = ε2/ε for γ1 = γ2 = 0.9 andN = 5.

[17, 18]. As a result, we obtain forµ ‖ (a, b) plane (µ is the dipole moment of a molecule
which is assumed to be the same for all molecules)

1
‖
1 = − ε − ε1

ε(ε + ε1)
W(γ1) (66)

1
‖
N = − ε − ε2

ε(ε + ε2)
W(γ2) (67)

R‖ = 1

ε
W(1) (68)

whereγ1,2 = 2d1,2/c andW(z) is (g is a two-dimensional reciprocal-lattice vector)

W(z) = 2π2µ2

ab

∑
g

|g + k|e−2πzc|g+k|. (69)

For µ ⊥ (a, b) plane, we get1⊥
1,N = 21

‖
1,N andR⊥ = −2R‖. The image effect caused by



Eigenstates of multilayer organic quantum wells 2287

the abrupt change in the dielectric constants is clearly seen from the above equations. Here
the parametersd1 andd2 exhibit their role. For 2d1 = 2d2 = c, i.e., γ1 = γ2 = 1, we get
for both of the orientations ofµ the following simple ratios:∣∣∣∣11

R

∣∣∣∣ =
∣∣∣∣1 − ε1/ε

1 + ε1/ε

∣∣∣∣ ∣∣∣∣1N

R

∣∣∣∣ =
∣∣∣∣1 − ε2/ε

1 + ε2/ε

∣∣∣∣ . (70)

These formulae indicate that|R| is greater than|1M | = max{|11|, |1N |} for any ε, ε1

and ε2 (the same result is obtained for 2d1, 2d2 > c). Hence, for surface states to
exist, it is necessary to have 0< d1, d2 < c/2 (i.e., 0 < γ1, γ2 < 1). Figure 5 shows
tm/|R| − 1 and tM/|R| − 1 as functions ofε1/ε and ε2/ε for γ1 = γ2 = 0.9 obtained
using the following parameters:k = 0, a = 12 Å, b = 6 Å, c = 23 Å (close to
the lattice constants of orthorhombic C14H10CuO∗

4) and N = 5. It is apparent from
figure 5 that, forγ1 = γ2 = 0.9 (< 1), there are domains ofε1/ε and ε2/ε in which
one (tm/|R| − 1 < 0 < tM/|R| − 1) or two (0< tm/|R| − 1 < tM/|R| − 1) surface states
may arise. For a given OQW material,ε1, ε2, d1 and d2 serve as control parameters for
tailoring the electronic energy spectrum of the OQW. For example, as is often encountered
in experiments, one can chooseε2 ≈ 1 (air). Then, from equation (67) one gets1N < 0
becauseε is always greater than 1. The sign of11 can be made positive or negative by
choosingε1 > ε or ε1 < ε, correspondingly (see equation (66)). If one knows the interface
distancesd1 and d2, one can calculate the energy spectrum of the OQW. In contrast, if
d1 andd2 are unknown, experimental data from the OQW energy spectrum would provide
information about the magnitudes of the interface distances.

Optical responses of surface organics have been studied experimentally mainly for
anthracene [26, 27]. In crystals like anthracene, tetracene,. . ., the energy difference between
the internal and surface layers (∼−200 cm−1) is much greater than the interlayer interaction
(∼1 cm−1). Under such circumstances, the electronic structure can be approximately
regarded as being composed of excitations from the isolated top surface layer, the one
immediately below, etc. For anthracene, the exciton energy level of the top surface layer
is found at 204 cm−1 above the bulk A-exciton one, and that of the layer below is also
weakly observed at only 6 cm−1 above the bulk one. A very sharp dip structure was
observed in the reflection spectrum, and was attributed to the exciton of the top surface
layer [28]. Picosecond time-scale measurements [26] at low temperatures have shown
super-radiant decays of about or shorter than 2 ps for the top-surface-layer exciton and
of the order of 15± 2 ps for the exciton from the layer below. However, in fact, the
interlayer interactionR, though it may be very small in comparison with11 and 1N ,
never equals zero exactly. TheR 6= 0 correction to the optical responses may be small for
anthracene, tetracene,. . ., but may not be negligible for other organics in general. In order
to obtain a deeper understanding of the optical responses of anthracene, tetracene,. . . and to
anticipate new optical properties of other organics, in which the interlayer interaction is not
too small compared with other energy characteristics, we must extend the present theory in
a few directions. First, we should couple the OQW to the radiation field and calculate the
imaginary part of the exciton self-energy due to this coupling, on the basis of the electronic
structures of multilayer OQWs obtained in the way described in this paper. Original surface
states due toR 6= 0 should be taken into account instead of those of noninteracting layers.
Second, if necessary, our theory can be extended beyond the NLA, i.e., to take into account
the coupling with the second, third,. . . nearest layers. The number of possible surface
states will increase and the theoretical formulation will be much more complicated. Third,
the unit cell was assumed to contain a single molecule, so the effect of Davydov splitting
cannot be discussed within the present theory. The extension necessary to take account of
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this effect is straightforward but worth doing. The transition dipole moment in the (a, b)
plane of anthracene is so large that the exciton energy dispersion in thek direction (‖(a, b)

plane) becomes of the order of 500 cm−1 above that of the bulk A exciton atk = 0. On
the other hand, in thep direction (⊥ (a, b) plane), the exciton energy dispersion may be
smaller because of the interlayer distance being larger than the lattice constants in the (a, b)
plane. The surface state is above the band in thep direction, but is embedded within
the width of the energy band in thek direction. The mixing of the surface states with
the bulk states looks very slight at low temperatures. However, the above features would
change drastically in organics in which the interlayer separation is of the same order as or
smaller than the lattice constants in the layer planes, leading to strong coupling between
layers. Fourth, it is also an interesting future problem to explain the various dynamical
characteristics of surface states in thick as well as thin OQWs by simultaneously taking into
account the interactions with both the photon field and the phonon field on the basis of the
correct electronic structures. Last but not least, the problems of surface quality (roughness,
random distribution of molecules on surfaces, surface relaxation and polarization,. . .) are
quite delicate.
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